Interpolation on Symmetric Spaces Via the Generalized Polar Decomposition
نویسندگان
چکیده
We construct interpolation operators for functions taking values in a symmetric space—a smooth manifold with an inversion symmetry about every point. Key to our construction is the observation that every symmetric space can be realized as a homogeneous space whose cosets have canonical representatives by virtue of the generalized polar decomposition—a generalization of the well-known factorization of a real nonsingular matrix into the product of a symmetric positive-definite matrix times an orthogonal matrix. By interpolating these canonical coset representatives, we derive a family of structure-preserving interpolation operators for symmetric spacevalued functions. As applications, we construct interpolation operators for the space of Lorentzian metrics, the space of symmetric positive-definite matrices, and the Grassmannian. In the case ofLorentzianmetrics, our interpolation operators provide a family of finite elements for numerical relativity that are frame-invariant and have signature which is guaranteed to be Lorentzian pointwise. We illustrate their potential utility by interpolating the Schwarzschild metric numerically.
منابع مشابه
Generalized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملAbstract Hardy-Sobolev spaces and interpolation
Hardy-Sobolev spaces and interpolation N. Badr Institut Camille Jordan Université Claude Bernard Lyon 1 UMR du CNRS 5208 F-69622 Villeurbanne Cedex [email protected] F. Bernicot Laboratoire de Mathématiques Université de Paris-Sud UMR du CNRS 8628 F-91405 Orsay Cedex [email protected] October 19, 2010 Abstract The purpose of this work is to describe an abstract theory of Ha...
متن کاملFinding the polar decomposition of a matrix by an efficient iterative method
Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.
متن کامل